软体
软体是一类在受到外力时会产生明显形变的物体,与刚体不同,软体能够模拟如布料、橡胶等柔性物体的动态行为。尽管软体模拟更为复杂,但它能为物理引擎中的物体提供更逼真的动画效果,特别是在涉及到柔性材质时。
组件介绍
软体模拟是物理引擎的高级功能,当前系统针对不同类型的软体提供了相应的组件:
- ClothSoftbody - 布料软体组件
- RopeSoftbody - 绳索软体组件
软体与模型对象的同步机制
当为模型对象添加软体组件后,物理引擎会在每一个物理模拟步长中计算软体的形变和运动状态。这个过程涵盖了柔性材料在外力、重力等物理作用力下的响应。根据这些计算,物理引擎会更新软体的顶点、法线等数据。软体组件会在其更新函数中将这些变化同步到模型对象的几何体上,使其在场景中展现逼真的物理效果。请注意,添加软体组件后,几何体的变形将由物理引擎自动处理,通常无需手动调整。若修改模型对象的变换可能会导致与物理模拟的不一致。
在使用软体组件前,需要确保物理系统已启用软体模拟:
Physics.init({useSoftBody: true});
基本功能
软体组件提供了一些通用的 API
,如下表所示:
属性 | 类型 | 描述 |
---|---|---|
btSoftBody | Ammo.btSoftBody | 获取 Ammo.js 的原生软体对象 |
mass | number | 软体的总质量,默认值为 1 |
margin | number | 碰撞边距,默认值为 0.15 |
group | number | 碰撞组,默认值为 1 |
mask | number | 碰撞掩码,默认值为 -1 |
influence | number | 锚点的影响力,默认值为 1 |
disableCollision | boolean | 是否禁用与锚定刚体之间的碰撞,默认值为 false |
activationState | ActivationState | 设置软体的激活状态 |
方法 | 描述 |
---|---|
wait() | 异步获取完全初始化的原生软体实例 |
applyFixedNodes() | 固定软体节点 |
clearAnchors() | 清除所有锚点 |
appendAnchor() | 锚定软体节点到指定刚体(原生方法的封装,不考虑变换) |
布料软体 ClothSoftbody
布料软体组件 ClothSoftbody
主要用于模拟布料的柔性动态行为,支持的 API
如下:
属性 | 类型 | 描述 |
---|---|---|
clothCorners | Vector3[] | 定义布料四个角的位置,默认以平面法向量计算各角 |
fixNodeIndices | CornerType[] | number[] | 固定布料的节点索引或角类型 |
anchorIndices | CornerType[] | number[] | 布料的锚点节点索引或角类型 |
anchorPosition | Vector3 | 布料锚定刚体后相对刚体的位置 |
anchorRotation | Vector3 | 布料锚定刚体后相对刚体的旋转 |
anchorRigidbody | Rigidbody | 添加锚点时需要的刚体 |
基本用法
为对象添加 ClothSoftbody
组件:
import { Object3D, MeshRenderer, PlaneGeometry, LitMaterial, Vector3 } from '@orillusion/core'
import { ClothSoftbody } from '@orillusion/physics'
let object = new Object3D();
let mr = object.addComponent(MeshRenderer);
// 设置平面的法向量,它决定了布料四个角的位置
mr.geometry = new PlaneGeometry(5, 5, 10, 10, Vector3.Z_AXIS);
mr.material = new LitMaterial();
// 添加布料组件
let clothSoftbody = object.addComponent(ClothSoftbody);
TIP
请注意:ClothSoftbody
组件仅支持 PlaneGeometry
类型的几何体。
通过设置 fixNodeIndices
属性,可以固定特定的布料节点:
clothSoftbody.fixNodeIndices = ['leftTop', 'rightTop'];
在布料初始化完毕后,可以继续固定节点:
clothSoftbody.applyFixedNodes(['leftBottom', 'rightBottom']);
通过 anchorIndices
属性设置锚定节点,并指定附加的刚体:
clothSoftbody.anchorIndices = ['top'];
clothSoftbody.anchorRigidbody = rigidbody;
// 附加到刚体后软体的中心点与旋转将会与刚体变换一致。
clothSoftbody.anchorPosition.set(0, 5, 0); // 通过 anchorPosition 设置相对位置
clothSoftbody.anchorRotation.set(0, 90, 0); // 通过 anchorRotation 设置相对旋转
TIP
锚点设置时会自动将软体附加到刚体,并可以设置 influence
和 disableCollision
等属性。
如果需要移除所有锚点,使软体从锚定的刚体上脱落,可以调用 clearAnchors()
方法:
clothSoftbody.clearAnchors();
示例
import { Engine3D, View3D, Scene3D, CameraUtil, AtmosphericComponent, webGPUContext, HoverCameraController, Object3D, DirectLight, LitMaterial, MeshRenderer, PlaneGeometry, Vector3, Object3DUtil } from "@orillusion/core";
import { Graphic3D } from "@orillusion/graphic";
import { Physics, Rigidbody, ClothSoftbody } from "@orillusion/physics";
import dat from "dat.gui";
class Sample_Cloth {
async run() {
await Physics.init({ useSoftBody: true, useDrag: true });
await Engine3D.init({ renderLoop: () => Physics.update() });
let view = new View3D();
view.scene = new Scene3D();
let sky = view.scene.addComponent(AtmosphericComponent);
view.camera = CameraUtil.createCamera3DObject(view.scene);
view.camera.perspective(60, webGPUContext.aspect, 1, 1000.0);
view.camera.object3D.addComponent(HoverCameraController).setCamera(0, -30, 20, new Vector3(0, 3, 0));
let lightObj3D = new Object3D();
let sunLight = lightObj3D.addComponent(DirectLight);
sunLight.intensity = 2;
sunLight.castShadow = true;
lightObj3D.rotationX = 24;
lightObj3D.rotationY = -151;
view.scene.addChild(lightObj3D);
sky.relativeTransform = lightObj3D.transform;
Engine3D.startRenderView(view);
this.createScene(view.scene);
}
createScene(scene: Scene3D) {
// create the ground and add a rigid body
let ground = Object3DUtil.GetSingleCube(30, 0, 30, 1, 1, 1);
scene.addChild(ground);
let rigidbody = ground.addComponent(Rigidbody);
rigidbody.mass = 0;
rigidbody.shape = Rigidbody.collisionShape.createStaticPlaneShape();
// create shelves, cloth, and ball
this.createShelves(scene);
this.createCloth(scene);
const ballRb = this.createBall(scene);
this.debug(scene, ballRb);
}
createShelves(scene: Scene3D) {
let shelf1 = Object3DUtil.GetSingleCube(0.5, 5, 0.5, 1, 1, 1); // left top
let shelf2 = shelf1.clone(); // right top
let shelf3 = shelf1.clone(); // left bottom
let shelf4 = shelf1.clone(); // right bottom
shelf1.localPosition = new Vector3(-4, 2.5, -4);
shelf2.localPosition = new Vector3(4, 2.5, -4);
shelf3.localPosition = new Vector3(-4, 2.5, 4);
shelf4.localPosition = new Vector3(4, 2.5, 4);
scene.addChild(shelf1);
scene.addChild(shelf2);
scene.addChild(shelf3);
scene.addChild(shelf4);
}
createCloth(scene: Scene3D) {
const cloth = new Object3D();
let meshRenderer = cloth.addComponent(MeshRenderer);
meshRenderer.geometry = new PlaneGeometry(8, 8, 20, 20, Vector3.UP);
let material = new LitMaterial();
material.baseMap = Engine3D.res.redTexture;
material.cullMode = 'none';
meshRenderer.material = material;
cloth.y = 5;
scene.addChild(cloth);
// add cloth softbody component
let softBody = cloth.addComponent(ClothSoftbody);
softBody.mass = 1;
softBody.margin = 0.2;
softBody.fixNodeIndices = ['leftTop', 'rightTop', 'leftBottom', 'rightBottom'];
}
createBall(scene: Scene3D) {
const ball = Object3DUtil.GetSingleSphere(1, 0.5, 0.2, 0.8);
ball.y = 10;
scene.addChild(ball);
let rigidbody = ball.addComponent(Rigidbody);
rigidbody.mass = 1.6;
rigidbody.shape = Rigidbody.collisionShape.createShapeFromObject(ball);
return rigidbody;
}
debug(scene: Scene3D, ballRb: Rigidbody) {
const graphic3D = new Graphic3D();
scene.addChild(graphic3D);
Physics.initDebugDrawer(graphic3D);
let gui = new dat.GUI();
let f = gui.addFolder('PhysicsDebug');
f.add(Physics.debugDrawer, 'enable');
f.add(Physics.debugDrawer, 'debugMode', Physics.debugDrawer.debugModeList);
gui.add({ ResetBall: () => ballRb.updateTransform(new Vector3(0, 10, 0), null, true) }, 'ResetBall');
}
}
new Sample_Cloth().run();
绳索软体 RopeSoftbody
绳索软体组件 RopeSoftbody
主要用于模拟绳索的柔性动态行为,支持的 API
如下:
API | 类型 | 描述 |
---|---|---|
fixeds | number | 绳索固定选项,0 :两端不固定,1 :起点固定,2 :终点固定,3 :两端固定 |
fixNodeIndices | number[] | 固定节点索引,与 fixeds 属性作用相同,但可以更自由的控制任意节点 |
elasticity | number | 绳索弹性,值越大弹性越低,默认值为 0.5 |
anchorRigidbodyHead | Rigidbody | 绳索起点处锚定的刚体 |
anchorRigidbodyTail | Rigidbody | 绳索终点处锚定的刚体 |
anchorOffsetHead | Vector3 | 锚点的起点偏移量 |
anchorOffsetTail | Vector3 | 锚点的终点偏移量 |
setElasticity() | void | 设置绳索弹性 |
buildRopeGeometry() | GeometryBase | 构建绳索(线条)几何体的静态方法 |
基本用法
为对象添加 RopeSoftbody
组件:
import { Object3D, MeshRenderer, PlaneGeometry, LitMaterial, Vector3 } from '@orillusion/core'
import { RopeSoftbody } from '@orillusion/physics'
let object = new Object3D();
let mr = object.addComponent(MeshRenderer);
let segmentCount = 10;
let startPos = new Vector3(0, 10, 0);
let endPos = new Vector3(10, 10, 0);
// 设置绳索几何体
mr.geometry = RopeSoftbody.buildRopeGeometry(segmentCount, startPos, endPos);
mr.material = new LitMaterial();
mr.material.topology = 'line-list'; // 需要设置为 line 渲染模式
// 添加绳索组件
let ropeSoftbody = object.addComponent(RopeSoftbody);
TIP
RopeSoftbody
组件仅支持 line
类型的几何体。为方便使用,组件内提供了 buildRopeGeometry()
静态方法。
注意添加材质时需要将拓扑结构 topology
设置为 'line-list'
。
固定绳索节点:
ropeSoftbody.fixeds = 1; // 固定绳索起点
末端连接刚体:
ropeSoftbody.anchorRigidbodyTail = rigidbody;
ropeSoftbody.anchorOffsetTail.set(0, 1, 0); // 附加到刚体后绳索的终点将会与刚体位置一致,设置 anchorOffsetTail 以调整相对位置
示例
import { Engine3D, View3D, Scene3D, CameraUtil, AtmosphericComponent, webGPUContext, HoverCameraController, Object3D, DirectLight, LitMaterial, MeshRenderer, Vector3, Object3DUtil, Color, } from "@orillusion/core";
import { Graphic3D } from "@orillusion/graphic";
import { Physics, Rigidbody, RopeSoftbody } from "@orillusion/physics";
import dat from "dat.gui";
class Sample_Rope {
async run() {
await Physics.init({ useSoftBody: true, useDrag: true });
await Engine3D.init({ renderLoop: () => Physics.update() });
let view = new View3D();
view.scene = new Scene3D();
let sky = view.scene.addComponent(AtmosphericComponent);
view.camera = CameraUtil.createCamera3DObject(view.scene);
view.camera.perspective(60, webGPUContext.aspect, 1, 1000.0);
view.camera.object3D.addComponent(HoverCameraController).setCamera(0, -30, 20, new Vector3(0, 3, 0));
let lightObj3D = new Object3D();
let sunLight = lightObj3D.addComponent(DirectLight);
sunLight.intensity = 2;
sunLight.castShadow = true;
lightObj3D.rotationX = 24;
lightObj3D.rotationY = -151;
view.scene.addChild(lightObj3D);
sky.relativeTransform = lightObj3D.transform;
Engine3D.startRenderView(view);
this.createScene(view.scene);
}
createScene(scene: Scene3D) {
// create the ground and add a rigid body
let ground = Object3DUtil.GetSingleCube(30, 0, 30, 1, 1, 1);
scene.addChild(ground);
let rigidbody = ground.addComponent(Rigidbody);
rigidbody.mass = 0;
rigidbody.shape = Rigidbody.collisionShape.createStaticPlaneShape();
// create shelves
this.createShelves(scene);
// create balls and ropes
for (let i = 0; i < 7; i++) {
let pos = new Vector3(6 - i * 2, 8, 0);
// check if this is the last ball (tail)
let ballRb = this.createBall(scene, pos, i === 6);
// create the rope connected to the ball
this.createRope(scene, pos, ballRb);
}
this.debug(scene);
}
createShelves(scene: Scene3D) {
let shelf1 = Object3DUtil.GetSingleCube(0.2, 8, 0.2, 1, 1, 1); // left
let shelf2 = Object3DUtil.GetSingleCube(0.2, 8, 0.2, 1, 1, 1); // right
let shelf3 = Object3DUtil.GetSingleCube(20.2, 0.2, 0.2, 1, 1, 1); // top
shelf1.localPosition = new Vector3(-10, 4, 0);
shelf2.localPosition = new Vector3(10, 4, 0);
shelf3.localPosition = new Vector3(0, 8, 0);
scene.addChild(shelf1);
scene.addChild(shelf2);
scene.addChild(shelf3);
}
createBall(scene: Scene3D, pos: Vector3, isTail: boolean) {
const ball = Object3DUtil.GetSingleSphere(0.82, 1, 1, 1);
ball.x = pos.x - (isTail ? 3 : 0);
ball.y = pos.y / 3 + (isTail ? 1.16 : 0);
scene.addChild(ball);
let rigidbody = ball.addComponent(Rigidbody);
rigidbody.shape = Rigidbody.collisionShape.createShapeFromObject(ball);
rigidbody.mass = 1.1;
rigidbody.restitution = 1.13;
// ball collision event to change color
let ballMaterial = ball.getComponent(MeshRenderer).material as LitMaterial;
let timer: number | null = null;
rigidbody.collisionEvent = (contactPoint, selfBody, otherBody) => {
if (timer !== null) clearTimeout(timer);
else ballMaterial.baseColor = new Color(Color.SALMON);
timer = setTimeout(() => {
ballMaterial.baseColor = Color.COLOR_WHITE;
timer = null;
}, 100);
}
return rigidbody;
}
createRope(scene: Scene3D, pos: Vector3, tailRb: Rigidbody) {
let ropeObj = new Object3D();
let mr = ropeObj.addComponent(MeshRenderer);
mr.material = new LitMaterial();
mr.material.topology = 'line-list';
mr.geometry = RopeSoftbody.buildRopeGeometry(10, pos, new Vector3(0, 0, 0));
scene.addChild(ropeObj);
// add rope softbody component
let ropeSoftbody = ropeObj.addComponent(RopeSoftbody);
ropeSoftbody.fixeds = 1; // fixed top
ropeSoftbody.mass = 1.0;
ropeSoftbody.elasticity = 1;
ropeSoftbody.anchorRigidbodyTail = tailRb;
ropeSoftbody.anchorOffsetTail.set(0, 0.82, 0); // 0.82 is ball radius
}
debug(scene: Scene3D) {
const graphic3D = new Graphic3D();
scene.addChild(graphic3D);
Physics.initDebugDrawer(graphic3D);
let gui = new dat.GUI();
let f = gui.addFolder('PhysicsDebug');
f.add(Physics.debugDrawer, 'enable');
f.add(Physics.debugDrawer, 'debugMode', Physics.debugDrawer.debugModeList);
}
}
new Sample_Rope().run();
软体配置
在软体创建过程中,内部配置了一些基础的参数来控制软体的行为,包括位置迭代、阻尼系数、刚性系数等。开发者可以通过操作原生的 Ammo.js
软体进行自定义配置,确保软体具有理想的物理效果:
// 异步等待软体初始化完成
let bt = await clothSoftbody.wait()
// native softbody API
let sbConfig = bt.get_m_cfg();
sbConfig.set_kDF(0.2); // 设置动力学系数
sbConfig.set_kDP(0.01); // 设置阻尼系数
sbConfig.set_kLF(0.02); // 设置升力系数
sbConfig.set_kDG(0.001); // 设置阻力系数
...
TIP
软体组件的属性仅在初始化时设置有效。